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ABSTRACT
A new lifetime model, which extends the Fréchet distribution called the
generalized transmuted Fréchet distribution is proposed and studied.
Various of its structural properties including ordinary and incomplete
moments, generating function, residual and reversed residual lifes, order
statistics and probability weighted moments are derived. Two charac-
terization theorems are presented. The maximum likelihood method is
used to estimate the model parameters. The flexibility of the new distri-
bution is illustrated using a real data set. It can serve as an alternative
model to other lifetime models available in the literature for modeling
positive real data in many areas.
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1. Introduction

Recently, there has been an increased interest among statisticians to develop new extended
distributions to be more capable for modeling data in different areas such as lifetime analysis,
engineering, economics, finance, demography, actuarial, biological, and medical sciences.

The Fréchet (Fr) distribution is an important distribution developed within the extreme
value theory. It has applications in life testing, floods, horse racing, rainfall, queues in
supermarkets, sea waves, and wind speeds. Further information about the Fr distribution and
its applications can be explored in Kotz and Nadarajah (2000).

Aiming a more flexible Fr distribution, for many years statisticians have been developing
various extensions and modified forms of the Fr distribution, with different number of
parameters. For example, the exponentiated Fr due to Nadarajah and Kotz (2003), the beta
Fr due to Nadarajah and Gupta (2004) and Barreto-Souza, Cordeiro, and Simas (2011), the
transmuted Fr due to Mahmoud and Mandouh (2013), the gamma extended Fr due to da
Silva et al. (2016), the Marshall–Olkin Fr due to Krishna et al. (2013), the Kumaraswamy Fr
due to Mead and Abd-Eltawab (2014), the transmuted Marshall–Olkin Fr due to Afify et al.
(2015), the Kumaraswamy Marshall–Olkin Fr due to Afify et al. (2016a), the Kumaraswamy
transmuted Marshall–Olkin Fr due to Yousof et al. (2016), the Weibull Fr due to Afify et al.
(2016b) and the beta exponential Fr due to Mead et al. (2017).

The probability density function (PDF) and cumulative distribution function (CDF) of the
Fr distribution are given by (for x ≥ 0)
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g(x; α, β) = βαβx−β−1exp
[
−
(α

x

)β
]

and G(x; α, β) = exp
[
−
(α

x

)β
]

(1)

respectively, where α > 0 is a scale parameter and β > 0 is a shape parameter.
In this paper, we define and study a new lifetime model called the generalized transmuted

Fréchet (GTFr) distribution. Its main feature is that three additional shape parameters are
inserted in Equation (1) to provide greater flexibility for the generated distribution. Based
on the generalized transmuted-G (GT-G) family of distributions, we construct the new five-
parameter GTFr model and give a comprehensive description of some of its mathematical
properties hoping that it will attract wider applications in engineering, survival and lifetime
data, reliability, and other areas of research.

Let g(x; ξ) and G(x; ξ) denote the density and cumulative functions of the baseline model
with parameter vector ξ . Nofal et al. (2017) defined the CDF of their GT-G family by

F (x; λ, a, b, ξ) = G (x; ξ)a
{

1 + λ − λG (x; ξ)b
}

(2)

The PDF of the GT-G family is given by

f (x; λ, a, b, ξ) = g (x; ξ) G (x; ξ)a−1
{

a (1 + λ) − λ (a + b) G (x; ξ)b
}

(3)

where a > 0, b > 0 and |λ| ≤ 1 are shape parameters.
Henceforth, let G be a continuous baseline distribution. We define the GT-G distribution

with three extra parameters a, b and λ by the PDF (Equation 3). A random variable X with
PDF (Equation 3) is denoted by X ∼GT-G(λ, a, b, ξ). If a = b = 1, it corresponds to the
transmuted class (TC) studied by Shaw and Buckley (2007). For b = 0, the GT-G family
reduces to the exponentiated-G (E-G) family defined by Gupta et al. (1998) and finally the
GT-G family reduces to the baseline distribution when a = b = 1 and λ = 0.

The rest of the paper is outlined as follows. In Section 2, we define the GTFr distribution,
provide its sub-models and give some plots for its PDF and hazard rate function (HRF).
We derive useful mixture representations for its PDF in Section 3. We provide in Section 4
some mathematical properties of the GTFr distribution including ordinary and incomplete
moments, moments of the residual and reversed residual lifes, moment generating function
(mgf), order statistics and probability weighted moments (PWMs). In Section 5, we provide
some useful characterization results. The maximum likelihood estimates (MLEs) of the
unknown parameters are obtained in Section 6. In Section 7, the GTFr distribution is applied
to a real data set to illustrate its potentiality. Finally, in Section 8, we provide some concluding
remarks.

2. The GTFr distribution

By inserting the CDF in Equation (1) in Equation (2), we obtain the CDF of the GTFr model
(for x > 0)

F(x) = exp
[
−a
(α

x

)β
] {

1 + λ − λexp
[
−b
(α

x

)β
]}

(4)

The corresponding PDF of Equation (4) is given by

f (x) = βαβx−β−1exp
[
−a
(α

x

)β
]{

a (1 + λ) − λ (a + b) exp
[
−b
(α

x

)β
]}

(5)
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where α, β , a, and b are positive parameters and |λ| ≤ 1. Here, α is a scale parameter
representing the characteristic life and β , a , b, and λ are shape parameters representing
the different patterns of the GTFr distribution. We denote a random variable X having
PDF (Equation 5) by X ∼GTFr(α, β , λ, a, b). The HRF, reversed hazard rate function and
cumulative hazard rate function of X are given by

h(x) =
βαβx−β−1exp

[
−a
(

α
x
)β] {a (1 + λ) − λ (a + b) exp

[
−b
(

α
x
)β]}

1 − exp
[
−a
(

α
x
)β] {1 + λ − λexp

[
−b
(

α
x
)β]}

τ(x) =
βαβx−β−1

{
a (1 + λ) − λ (a + b) exp

[
−b
(

α
x
)β]}{

1 + λ − λexp
[
−b
(

α
x
)β]}

and

H(x) = − ln
(

1 − exp
[
−a
(α

x

)β
] {

1 + λ − λexp
[
−b
(α

x

)β
]})

respectively.
The GTFr distribution is a very flexible model having several special cases. Its 11 sub-

models are listed in Table 1. The plots of the GTFr density for some parameter values α, β , λ,
a, and b are displayed in Figures 1 and 2. The plots in Figures 1 and 2 show that the pdf of the
GTFr distribution can be reversed J-shape, right-skewed, left-skewed or bimodal.

Figures 3 and 4 provides some plots of the hrf of the GTFr model for selected parameter
values. It can be seen that the hrf is very flexible so the proposed distribution should be useful
to model increasing, decreasing, unimodal, and bathtub failure rates behavior.

3. Linear representation

The GTFr density function Equation (5) can be expressed as

f (x) = a (1 + λ) g (x) G (x)a−1 − λ (a + b) g (x) G (x)a+b−1 (6)

By inserting Equation (1) in Equation (6), we obtain

f (x) = a (1 + λ) βαβx−β−1exp
[
−a
(α

x

)β
]

Table 1. Sub-models of the GTFr model.
Model α β λ a b Author

GTIR α 2 λ a b New
GTIEx α 1 λ a b New
TFr α β λ 1 1 Mahmoud and Mandouh (2013)
TIEx α 1 λ 1 1 –
TIR α 2 λ 1 1 –
EFr α β 0 a 0 Nadarajah and Kotz (2003)
EIR α 2 0 a 0 –
EIEx α 1 0 a 0 –
Fr α β 0 1 1 Fréchet (1924)
IR α 2 0 1 1 Keller and Kamath (1982)
IEx α 1 0 1 1 Treyer (1964)

Abbreviations: IR, Inverse Rayleigh; IEx, Inverse Exponential; E, Exponentiated; T, Transmuted.
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Figure 1. The PDF plots of the GTFr distribution for some parameter values.
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Figure 2. The PDF plots of the GTFr distribution for some parameter values.

− λ (a + b) βαβx−β−1exp
[
− (a + b)

(α

x

)β
]

(7)

Then, the PDF in Equation (7) can be expressed as

f (x) = (1 + λ) ha (x) − λ ha+b (x) (8)

where hj (x), j = a, a + b, is the Fr density with scale parameter αj1/β and shape parameter β .
Equation (8) is a mixture of two Fr densities. As a result some of the properties that we

have obtained can also be obtained considering this property.
Let Z be a random variable having the Fr distribution Equation (1) with parameters α

and β . For r < β , the rth ordinary and incomplete moments of Z are, respectively, given by
μ′

r = αr �(1 − r/β) and ϕr(t) = αrγ (1 − r/β , (α/t)β) , where

�(m) =
∫ ∞

0
ym−1 e−ydy and γ (s, z) =

∫ z

0
ys−1 e−ydy

are the complete gamma function and lower incomplete gamma function, respectively.
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Figure 3. The hrf plots of the GTFr distribution for some parameter values.
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Figure 4. The hrf plots of the GTFr distribution for some parameter values.

4. Properties

Here, we investigate mathematical properties of the GTFr distribution including ordinary and
incomplete moments, moment of the residual and reversed residual lifes, mgf, order statistics,
and PWMs.

4.1. Ordinary and incomplete moments

The nth ordinary moment of X is given by

μ′
n = E(Xn) = (1 + λ) E

(
Yn

a
)− λE

(
Yn

a+b
)

where

E
(

Yn
j

)
=
∫ ∞

0
xn hj (x) dx, j = a, a + b
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Therefore, for n < β , we obtain

μ′
n = (1 + λ) a

n
β αn �

(
1 − n

β

)
− λ (a + b)

n
β αn �

(
1 − n

β

)
(9)

Setting n = 1 in Equation (9), we have the mean of X.

Remark 1. Table 2 shows that different choices of a and b could yield positive and negative
skewness.

The nth central moment of X is given by

Mn = E(X − μ)n =
n∑

k=0
(−1)k

(
n
k

)
(μ′

1)
n μ′

n−k

The nth incomplete moment of the GTFr distribution is defined by ϕn(t) = ∫ t
0 xn f (x)dx.

Using Equation (8), we can write

ϕn(t) = (1 + λ)

∫ t

0
xn ha (x) dx − λ

∫ t

0
xnha+b (x) dx

and then using the lower incomplete gamma function, we obtain (for n < β)

ϕn(t) = (1 + λ) a
n
β αn γ

(
1 − n

β
, a
(α

t

)β
)

− λ (a + b)
n
β αn γ

(
1 − n

β
, (a + b)

(α

t

)β
)

The important application of the first incomplete moment, which follows from the above
equation with n = 1, is related to the Lorenz and Bonferroni curves. These curves are very
useful in economics, reliability, demography, insurance and medicine.

Another application of the first incomplete moment is related to the mean residual life and
the mean waiting time given by m1(t) = [1 − ϕ1(t)] /R(t) − t and M1(t) = t − ϕ1(t)/F(t),
respectively.

Further, the amount of scatter in a population is evidently measured to some extent by the
totality of deviations from the mean and median. The mean deviations about the mean and
about the median of X can be expressed as

δμ (X) =
∫ ∞

0

∣∣X − μ′
1
∣∣ f (x)dx = 2μ′

1F(μ′
1) − 2ϕ1(μ

′
1)

and

δM(X) =
∫ ∞

0
|X − M| f (x)dx = μ′

1 − 2ϕ1(M)

Table 2. Skewness of the GTFr model for various values of a and b.
a b Skewness a b Skewness a b Skewness

5 5 2.068135 2 2 −0.496087 4.00 5 1.202875
5 3 2.082621 2 1 −0.577528 3.00 5 0.302502
5 1 1.851670 2 0.9 −1.429561 2.00 5 −0.648299
4 4 1.242962 2 0.8 −1.428610 1.00 5 −1.783897
4 2 1.192853 2 0.7 −1.429425 2.90 5 0.209642
3 3 0.389904 2 0.6 −1.432128 2.69 5 0.012828
3 1 0.245648 2 0.5 −1.436843 2.68 5 0.003397
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respectively, where μ′
1 = E(X) comes from Equation (9), F(μ′

1) is simply calculated from
Equation (4), ϕ1(μ

′
1) is the first incomplete moment and M is the median of X.

4.2. Residual and reversed residual life functions

The sth moment of the residual life, say ms(t) = E[(X − t)s | X > t], t > 0, s = 1, 2, . . . ,
uniquely determine F(x). The sth moment of the residual life of X is given by

ms(t) = 1
R(t)

∫ ∞

t
(x − t)sdF(x)

Using the generalized binomial series and Equation (8), we can write (for r < β)

ms(t) = 1
R(t)

s∑
r=0

(−t)s−r
(

s
r

){
(1 + λ) a

r
β αr �

(
1 − r

β
, a
(α

t

)β
)

− λ (a + b)
r
β αr �

(
1 − r

β
, (a + b)

(α

t

)β
)}

where �(k, z) = ∫∞
z yk−1 e−ydy is the the upper incomplete gamma function.

An interesting function called the mean residual life (MRL) function or the life expectation
at age t is defined by m1(t) = E [(X − t) | X > t], which represents the expected additional
life length for a unit which is alive at age t. Setting s = 1 in the last equation gives the MRL of
X.

The sth moment of the reversed residual life uniquely determines F(x) and it is defined by

Ms(t) = E
[
(t − X)s | X ≤ t

] = 1
F(t)

∫ t

0
(t − x)sdF(x)

where t > 0 and s = 1, 2, ...
Therefore, the sth moment of the reversed residual life of X, given that r < β , becomes

Ms(t) = 1
F(t)

s∑
r=0

(−1)r
(

s
r

){
(1 + λ) a

r
β αr γ

(
1 − r

β
, a
(α

t

)β
)

− λ (a + b)
r
β αr γ

(
1 − r

β
, (a + b)

(α

t

)β
)}

The mean reversed residual life, also called mean inactivity time (MIT) or mean waiting time
(MWT), represents the waiting time elapsed since the failure of an item on condition that this
failure had occurred in (0, t) and it is given by M1(t) = E[(t − X) | X ≤ t], and its simply
follows from the last equation with s = 1.

4.3. Generating function

Let Mj(t) be the mgf of Yj, j = a, a + b. Therefore, using Equation (8) the mgf of X, say
M(t) = E(etx), is given by

M(t) = (1 + λ) Ma (x) − λMa+b (x) (10)
First, we provide the mgf of the Fr distribution as provided by Afify et al. (2016b). We can
write the mgf of W = 1/X as

M(t; α, β) = βαβ

∫ ∞

0
et/w w(β−1) e−(αw)β dw
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By expanding the first exponential and determining the integral, we obtain

M(t; α, β) =
∞∑

n=0

αn tn

n! �

(
β − n

β

)
Consider the Wright generalized hypergeometric function defined by

p�q

[ (
γ1, A1

)
, . . . ,

(
γp, Ap

)(
β1, B1

)
, . . . ,

(
βq, Bq

) ; x
]

=
∞∑

n=0

∏p
j=1 �

(
γj + Aj n

)∏q
j=1 �

(
βj + Bj n

) xn

n!
Then, we can write M(t; α, β) as

M(t; α, β) = 1�0

[ (
1, −β−1)

− ; α t
]

(11)

Combining the Equations (10) and (11), the mgf of X reduces to

M(t) =
{
(1 + λ) 1�0

[ (
1, −β−1)

− ; αa1/β t
]

−λ 1�0

[ (
1, −β−1)

− ; α (a + b)1/β t
]}

4.4. Order statistics

Let X1, . . . , Xn denote n independent and identically distributed GTFr random variables.
Further, let X(1), . . . , X(n) denote the order statistics from these n variables. Then, the PDF of
the ith order statistic X(i), say fi:n(x), is given by

fi:n(x) = f (x)

B(i, n − i + 1)

n−i∑
j=0

(−1)j
(

n − i
j

)
F(x)i+j−1

Using Equation (4), we obtain

F(x)i+j−1 = exp
[
−a
(
i + j − 1

) (α

x

)β
] {

1 + λ − λexp
[
−b
(α

x

)β
]}i+j−1

=
∞∑

k=0
(−1)k (1 + λ)i+j−1

(
λ

1 + λ

)k (i + j − 1
k

)
× exp

{
− [a (i + j − 1

)+ kb
] (α

x

)β
}

Then, we have

f (x)F(x)i+j−1 =
∞∑

k=0
(−1)k (1 + λ)i+j−1

(
λ

1 + λ

)k (i + j − 1
k

)
×
(

a (1 + λ) dexp
{
− [a (i + j

)+ kb
] (α

x

)β
}

−λ (a + b) dexp
{
− [a (i + j

)+ b (k + 1)
] (α

x

)β
})

(12)
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where d = βαβx−β−1. Then, we can write

fi:n(x) =
n−i∑
j=0

∞∑
k=0

[
ak,j ga(i+j)+kb (x) − bk,j ga(i+j)+b(k+1) (x)

]
(13)

where

ak,j = (−1)k+j a (1 + λ) (1 + λ)i+j−1

B(i, n − i + 1)
[
a
(
i + j

)+ kb
] ( λ

1 + λ

)k (n − i
j

)(
i + j − 1

k

)
bk,j = (−1)k+j λ (a + b) (1 + λ)i+j−1

B(i, n − i + 1)
[
a
(
i + j

)+ b (k + 1)
] ( λ

1 + λ

)k (n − i
j

)(
i + j − 1

k

)
and gη (x) denotes the Fr density function with with scale parameter αη1/β and shape
parameter β . Thus, the density function of the GTFr order statistics is a mixture of Fr densities.
Based on Equation (13), we can obtain some structural properties of Xi:n from those Fr
properties.

The nth moment of Xi:n (for n < β) is given by

E(Xn
i:n) =

n−i∑
j=0

∞∑
k=0

[
ak,j E

(
Yn

a(i+j)+kb

)
− bk,jE

(
Yn

a(i+j)+b(k+1)

)]
(14)

Equation (14) reveals that the nth moment of Xi:n can be expressed as an infinite linear
combination of Fr moments.

Based upon the moments in Equation (14), we can derive explicit expressions for the
L-moments of X as infinite weighted linear combinations of the means of suitable GTFr
distributions. The L-moments are given by

ξs = 1
s

s−1∑
k=0

(−1)k
(

s − 1
k

)
E
(
Xs−k:s

)
, s ≥ 1

4.5. Probability weighted moments

The PWMs are expectations of certain functions of a random variable. The PWM approach
can be used for estimating parameters of any distribution whose inverse form cannot be
expressed explicitly.

The (s, r)th PWM of X is defined by

ρs,r = E
{

Xs F(X)r} =
∫ ∞

−∞
xs F(x)r f (x) dx

Using Equation (12), we can write

f (x)F(x)r =
∞∑

k=0
(−1)k (1 + λ)r

(
λ

1 + λ

)k (r
k

)
×
(

a (1 + λ) dexp
{
− [a (r + 1) + kb]

(α

x

)β
}

− λ (a + b) dexp
{
− [a (r + 1) + b (k + 1)]

(α

x

)β
})
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or, equivalently, we have

f (x)F(x)r =
∞∑

k=0

[
mk ga(r+1)+kb (x) − wk ga(r+1)+b(k+1) (x)

]
where

mk = (−1)k+j a (1 + λ)r+1

a (r + 1) + kb

(
λ

1 + λ

)k (r
k

)
and

wk = (−1)k+j λ (a + b) (1 + λ)r

a (r + 1) + b (k + 1)

(
λ

1 + λ

)k (r
k

)
Therefore, ρs,r can be defined as an infinite linear combination of Fr moments, by

ρs,r =
∞∑

k=0

[
mkE

(
Ys

a(r+1)+kb

)
− wkE

(
Ys

a(r+1)+b(k+1)

)]
where

E
(
Ys

δ

) =
∫ ∞

0
xs hδ (x) dx

Therefore, for s < β , we obtain

ρs,r =
∞∑

k=0

{
mk [a (r + 1) + kb]

s
β αs �

(
1 − s

β

)
−wk [a (r + 1) + b (k + 1)]

s
β αs �

(
1 − s

β

)}

5. Characterization

We will present two characterization theorems based on truncated moments. To prove the
main characterization theorems we need the following two lemmas.

Assumption 1. Suppose the random variable X is absolutely continuous with CDF F(x) and
PDF f (x). Let

γ = sup{x|F(x) > 0} and δ = inf{x|F(x) < 1}
We assume E(X) exist.

Lemma 1. Let X be a random variable under the Assumption 1. Assume

E(X|X ≤ x) = g(x)τ (x)

where g(x) is a continuous differentiable function with the condition∫ x

γ

u − g′(u)

g(u)
du < ∞ for all x, γ < x < δ
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and

τ(x) = f (x)

F(x)

Then

f (x) = c e
∫ x
γ

u−g′(u)
g(u)

du, γ < x < δ

Proof. We have

g(x) =
∫ x
γ

ufu)du
f (x)

or
∫ x

γ

ufu)du = g(x)f (x)

Differentiating with respect to x, we obtain

xf (x) = f ′(x)g(x) + f (x)g′(x)

and hence
f ′(x)

f (x)
= x − g′(x)

g(x)

On integrating both sides of the equation, we have

f (x) = c e
∫ x
γ

u−g′(u)

g(u)
du

and c is such that ∫ δ

γ

f (x)dx = 1

Lemma 2. Let X be a random variable under the Assumption 1. Assume

E(X|X ≥ x) = g(x)h(x)

where g(x) is a continuous differentiable function with the condition∫ x

γ

u + g′(u)

g(u)
du < ∞, for all x, γ < x < δ

and

h(x) = f (x)

1 − F(x)

Then

f (x) = c e− ∫ x
γ

u+g′(u)

g(u)
du, γ < x < δ

where c is determinated by the condition
∫ δ

γ
f (x)dx = 1.

Proof of this lemma is similar to the proof of Lemma 1.
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Theorem 1. Let X be a random variable satisfying the Assumption 1 with γ = 0 and δ = ∞,
then

E(X|X ≤ x) = g(x)τ (x)

where

τ(x) = f (x)

F(x)

g(x) =
(1 + λ)αa1/β�c

a( α
t )β

(1 − 1
β
) − λ(a + b)1/βα�c

(a+b)( α
t )β

(1 − 1
β
)

a(1 + λ)βαβx−β−1 exp
[−a(α

x )β
]− λ(a + b)βαβx−β−1 exp

[−(a + b)(α
x )β
] , β > 1

with

�c
x(γ ) =

∫ ∞

x
uγ−1e−udu

If and only if

f (x) = a(1 + λ)βαβx−β−1 exp
[
−a
(α

x

)β
]

− λ(a + b)βαβx−β−1 exp
[
−(a + b)

(α

x

)β
]

β > 1

Proof. If

f (x) = a(1 + λ)βαβx−β−1 exp
[
−a
(α

x

)β
]

− λ(a + b)βαβx−β−1 exp
[
−(a + b)

(α

x

)β
]

Then

f (x)g(x) =
∫ x

0

{
a(1 + λ)βαβu−β exp

[
−a
(α

u

)β
]

− λ(a + b)βαβu−β exp
[
−(a + b)

(α

u

)β
]}

du

= (1 + λ)αa1/β�c
a( α

t )β
(1 − 1/β) − λ(a + b)1/βα�c

(a+b)( α
t )β

(1 − 1/β) , β > 1

with

�c
x(γ ) =

∫ ∞

x
uγ−1e−udu

Thus

g(x) =
(1 + λ)αa1/β�c

a( α
t )β

(1 − 1/β) − λ(a + b)1/βα�c
(a+b)( α

t )β
(1 − 1/β)

a(1 + λ)βαβx−β−1 exp
[
−a
(

α
x
)β]− λ(a + b)βαβx−β−1 exp

[
−(a + b)

(
α
x
)β]

Suppose

g(x) =
(1 + λ)αa1/β�c

a( α
t )β

(1 − 1/β) − λ(a + b)1/βα�c
(a+b)( α

t )β
(1 − 1/β)

a(1 + λ)βαβx−β−1 exp
[
−a
(

α
x
)β]− λ(a + b)βαβx−β−1 exp

[
−(a + b)

(
α
x
)β]
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Then we have

g′(x) = x − g(x)⎧⎨⎩ A(x) + B(x)

a(1 + λ)βαβx−β−1 exp
[
−a
(

α
x
)β]− λ(a + b)βαβx−β−1 exp

[
−(a + b)

(
α
x
)β]
⎫⎬⎭

where

A(x) = a
xβ+2 αββe−a( α

x )
β

(λ + 1)

[
aβ
(α

x

)β − (β + 1)

]
and

B(x) = 1
xβ+2 αββλ exp

[
− (a + b)

(α

x

)β
]

(a + b)

[
β + 1 − (a + b)β

(α

x

)β
]

Thus
x − g(x)

g(x)
= A(x) + B(x)

a(1 + λ)βαβx−β−1 exp
[
−a
(

α
x
)β]− λ(a + b)βαβx−β−1 exp

[
−(a + b)

(
α
x
)β]

By Lemma 1, we have

f ′(x)

f (x)
= A(x) + B(x)

a(1 + λ)βαβx−β−1 exp
[
−a
(

α
x
)β]− λ(a + b)βαβx−β−1 exp

[
−(a + b)

(
α
x
)β]

Integrating the above equation, we obtain

f (x) = c
{

a(1 + λ)βαβx−β−1 exp
[
−a
(α

x

)β
]

− λ(a + b)

}
× βαβx−β−1 exp

[
−(a + b)

(α

x

)β
]

Using the boundary condition
∫∞

o f (x)dx = 1, we will have c = 1.

Theorem 2. Let X be a random variable satisfying the Assumption 1 with γ = 0 and δ = ∞,
then

E(X|X ≥ x) = m(x)h(x)

where

h(x) = f (x)

1 − F(x)

m(x) =
(1 + λ)αa1/β�a( α

t )β (1 − 1/β) − λ(a + b)1/βα�(a+b)( α
t )β (1 − 1/β)

ca(1 + λ)βαβx−β−1 exp
[
−a
(

α
x
)β]− λ(a + b)βαβx−β−1 exp

[
−(a + b)

(
α
x
)β] ,

β > 1

and

�x(γ ) =
∫ x

0
uγ−1e−udu
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If and only if

f (x) = a(1 + λ)βαβx−β−1 exp
[
−a
(α

x

)β
]

− λ(a + b)βαβx−β−1 exp
[
−(a + b)

(α

x

)β
]

,

β > 1

Proof. If

f (x) = a(1 + λ)βαβx−β−1 exp
[
−a
(α

x

)β
]

− λ(a + b)βαβx−β−1 exp
[
−(a + b)

(α

x

)β
]

Then

f (x)m(x) =
∫ ∞

x

{
a(1 + λ)βαβu−β exp

[
−a
(α

u

)β
]

− λ(a + b)βαβu−β exp
[
−(a + b)

(α

u

)β
]}

du

= (1 + λ)αa1/β�a( α
t )β (1 − 1/β) − λ(a + b)1/βα�(a+b)( α

t )β (1 − 1/β), β > 1

with

�x(γ ) =
∫ x

0
uγ−1e−udu

Thus

m(x) =
(1 + λ)αa1/β�a( α

t )β (1 − 1/β) − λ(a + b)1/βα�(a+b)( α
t )β (1 − 1/β)

a(1 + λ)βαβx−β−1 exp
[
−a
(

α
x
)β]− λ(a + b)βαβx−β−1 exp

[
−(a + b)

(
α
x
)β]

Suppose

m(x) =
(1 + λ)αa1/β�a( α

t )β (1 − 1/β) − λ(a + b)1/βα�(a+b)( α
t )β (1 − 1/β)

a(1 + λ)βαβx−β−1 exp
[
−a
(

α
x
)β]− λ(a + b)βαβx−β−1− exp

[
−(a + b)

(
α
x
)β]

Then we have

g′(x) = −x − g(x)⎧⎨⎩ A(x) + B(x)

a(1 + λ)βαβx−β−1 exp
[
−a
(

α
x
)β]− λ(a + b)βαβx−β−1 exp

[
−(a + b)

(
α
x
)β]
⎫⎬⎭

where

A(x) = a
xβ+2 αββe−a( α

x )
β

(λ + 1)

[
aβ
(α

x

)β − (β + 1)

]
and

B(x) = 1
xβ+2 αββλ (a + b) exp

[
− (a + b)

(α

x

)β
] [

β + 1 − (a + b)β
(α

x

)β
]

Thus

− x + g(x)

g(x)
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= A(x) + B(x)

a(1 + λ)βαβx−β−1 exp
[
−a
(

α
x
)β]− λ(a + b)βαβx−β−1 exp

[
−(a + b)

(
α
x
)β]

By Lemma 2

f ′(x)

f (x)
= A(x) + B(x)

a(1 + λ)βαβx−β−1 exp
[
−a
(

α
x
)β]− λ(a + b)βαβx−β−1 exp

[
−(a + b)

(
α
x
)β]

Integrating the above equation, we obtain

f (x) = ca(1 + λ)βαβx−β−1 exp
[
−a
(α

x

)β
]

− λ(a + b)βαβx−β−1 exp
[
−(a + b)

(α

x

)β
]

Using the boundary condition
∫∞

o f (x)dx = 1, we will have c = 1.

6. Estimation

The maximum likelihood estimators (MLEs) have desirable properties and can be used when
constructing confidence intervals and regions and also in test statistics. We consider the
maximum likelihood to estimate the unknown parameters of the GTFr model from complete
samples only. Let x1, . . . , xn be a random sample of the GTFr distribution with unknown
parameter vector φ = (α, β , λ, a, b)T .

The log-likelihood function for φ, say � = �(φ), is given by

� = n ln β + nβ ln α − (β + 1)

n∑
i=1

ln (xi) − a
n∑

i=1
si +

n∑
i=1

ln (ki)

where si = (α/xi)
β and ki = [a (1 + λ) − λ (a + b) exp (−bsi)

]
.

The score vector is given by

U (φ) = ∂�

∂φ
=
(

∂�

∂α
,
∂�

∂β
,
∂�

∂λ
,
∂�

∂a
,
∂�

∂b

)T

where

∂�

∂α
= nβ

α
− aβ

α

n∑
i=1

si + λb (a + b) β

α

n∑
i=1

si exp (−bsi)

∂�

∂β
= n

β
+ n ln α −

∑n

i=1
ln (xi) − a

n∑
i=1

si ln (α/xi)

∂�

∂λ
=

n∑
i=1

1
ki

[
a − (a + b) exp (−bsi)

]
∂�

∂a
= −

n∑
i=1

si +
n∑

i=1

1
ki

[
1 + λ − λ exp (−bsi)

]
and

∂�

∂b
=

n∑
i=1

1
ki

[
λ [(a + b) si + 1] exp (−bsi)

]
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We can obtain the estimates of the unknown parameters by setting the score vector to zero,
U(φ̂) = 0. By solving these equations simultaneously gives the MLEs α̂, β̂ , λ̂, â and b̂. Statisti-
cal software can be used to solve these equations numerically by means of iterative techniques
such as the Newton-Raphson algorithm because they can not be solved analytically. For the
GTFr distribution all the second order derivatives exist.

For interval estimation of the model parameters, we require the 5×5 observed information
matrix J(φ) = {Jrs} for r, s = α, β , λ, a, b, whose elements are given in the Appendix. Under
standard regularity conditions, the multivariate normal N5(0, J(φ̂)−1) distribution can be
used to construct approximate confidence intervals for the model parameters. Here, J(φ̂) is
the total observed information matrix evaluated at φ̂. Therefore, approximate 100(1 − ϕ)%
confidence intervals for α, β , λ, a and b can be determined as:

α̂ ± zϕ/2

√̂
Jαα , β̂ ± zϕ/2

√̂
Jββ , λ̂ ± zϕ/2

√̂
Jaa, â ± zϕ/2

√̂
Jaa

and

b̂ ± zϕ/2

√̂
Jbb

where zϕ/2 is the upper ϕth percentile of the standard normal distribution.

7. Application

In this section, we provide an application of the GTFr distribution to show its importance.
We now provide a data analysis in order to assess the goodness-of-fit of the new model.
The data set refers to brain cancer diseases in Iraq from January 1, 2009 to December 31,
2009 and it consists of 50 observations (see Al-Kanani and Jasim 2012). For this data set
we shall compare the fits of the GTFr model with other competitive models namely: the
Kumaraswamy transmuted Marshall–Olkin Fréchet (KTMOFr), transmuted Marshall–Olkin
Fréchet (TMOFr), beta Fréchet (BFr), gamma extended Fréchet (GEFr), Marshall–Olkin
Fréchet (MOFr), transmuted Fréchet (TFr) and Fréchet (Fr) distributions with corresponding
densities given (for x > 0) by

KTMOFr: f (x) = abαβθβx−β−1 α(1+λ)e−
(

θ
x
)β

−(αλ+α+λ−1)e−2
(

θ
x
)β[

α+(1−α)e−
(

θ
x
)β]2a+1

×
[
α(1 + λ)e−

(
θ
x

)β

− (αλ + α − 1)e−2
(

θ
x

)β
]a−1

×

⎧⎪⎪⎨⎪⎪⎩1 −

[
α(1+λ)e−

(
θ
x
)β

−(αλ+α−1)e−2
(

θ
x
)β]a

[
α+(1−α)e−

(
θ
x
)β]2a

⎫⎪⎪⎬⎪⎪⎭
b−1

TMOFr: f (x) = αβθβx−β−1 α(1+λ)e−
(

θ
x
)β

−(αλ+α+λ−1)e−2
(

θ
x
)β[

α+(1−α)e−
(

θ
x
)β]2a+1

BFr: f (x) = βαβ

B(a,b)
x−β−1 e−a( α

x )
β
[

1 − e−( α
x )

β
]b−1

GEFr: f (x) = aβαβ

�(b)
x−β−1 e−( α

x )
β
[

1 − e−( α
x )

β
]a−1 {− log

[
1 − e−( α

x )
β
]a}b−1
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MOFr: f (x) = αβθβ x−β−1 exp
[
− ( θx )β] {α + (1 − α) exp

[
− ( θx )β]}−2

,
where α, β , θ , a, and b are positive parameters and |λ| ≤ 1.

The model selection is carried out using goodness-of-fit measures including the Akaike
information criterion (AIC), consistent Akaike information criterion (CAIC), Hannan-
Quinn information criterion (HQIC), Bayesian information criterion (BIC), maximized log-
likelihood under the model (−2�̂), Anderson–Darling (A∗) and Cramér–Von Mises (W∗)
statistics.

Table 3 lists the numerical values of goodness-of-fit statistics, whilst the MLEs and their
corresponding standard errors (in parentheses) of the model parameters are given in Table 4.

The figures in Table 3 reveal that the GTFr distribution provides a superior fit to the
brain cancer data than other compitive models. Figure 5 displays the fitted PDF of the GTFr
distribution.

8. Conclusions

In this paper, we propose a new five-parameter distribution called the generalized transmuted
Fréchet (GTFr) distribution, which extends the Fréchet distribution. An obvious reason for
generalizing a classical distribution is the fact that the new model provides more flexibility
to analyze real life data. We provide some of its mathematical and statistical properties.
The GTFr density function can be expressed as a mixture of Fréchet densities. We derive
explicit expressions for the ordinary and incomplete moments, generating function, residual
and reversed residual life functions, order statistics and probability weighted moments.
The maximum likelihood estimation of the model parameters is discussed. The proposed

Table 3. Goodness-of-fit statistics for brain cancer data.
Model −2�̂ AIC CAIC BIC HQIC A∗ W∗

GTFr 519.669 529.669 533.309 539.229 531.033 0.050269 0.326498
KTMOFr 522.098 534.098 536.051 545.569 538.466 0.091987 0.488535
TMOFr 524.287 532.288 533.176 539.936 535.199 0.546332 3.067689
MOFr 524.609 530.609 531.131 536.346 532.794 0.160599 0.862163
GEFr 524.889 532.885 533.779 540.537 535.802 0.164100 0.870300
BFr 524.942 532.942 533.831 540.590 535.855 0.163970 0.873906
TFr 534.345 540.345 540.867 546.082 542.529 0.327316 1.811177
Fr 536.975 540.975 541.231 544.799 542.432 0.368007 2.046653

*Hold comparison between the new model and the other ones.

Table 4. MLEs and their standard errors (in parentheses) for brain cancer data.
Estimates

Model α̂ β̂ λ̂ â b̂ θ̂

GTFr 20.9776977 2.5572262 −0.7140562 0.6820838 23.3572016
KTMOFr 1.5414615 0.5775995 −0.2728668 4.1280928 34.3155264 9.7678627
TMOFr 11.2397898 2.2811016 −0.1360837 44.9213072
MOFr 13.832297 2.189104 26.221601
GEFr 43.643954 0.146632 109.608149 53.637852
BFr 40.0087709 0.1408282 58.3679124 91.6079253
TFr 31.6673854 1.3824328 −0.6056032
Fr 41.151081 1.262842
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Figure 5. The estimated PDF of the GTFr model for brain cancer data.

distribution, applied to a real data set, provides better fits than some other nested and non
nested models.
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